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INTRODUCTION TO BIPLOTSFOR GxE TABLES'

Abstract

This report contains an introduction to biplots, a technique to display large tables in a
graph. The construction and interpretation is explained at a fairly basic level and is
directed at plant breeders. The technique is illustrated with several artificial data sets as
well asarea one from maize breeding in drought conditions.
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1. Introduction

Plant brealers typicdly conduwct large-scde trids to investigate the performance of large
numbers of genatypes in several environments with the am of seleding the "best' genatypes for
the purpose of further improvements of crops. The data from such trials consist of the scores on
one or more dtributes for ead genatype in ead environment, barring missng data. Generaly
data from severa replicaions are avalable axd the raw results neal to be anadysed by
sophisticaed analysis of variance techniques to assess blocking effeds, to estimate variance
comporents, etc. (see anong others, Seale, Casalla, McCulloch, 1992 and the urse notes by
Cullis and Gilmour, 1995. For the purpose of this report, we asume that such analyses have
been caried ou, and that for further analysis a Genotype by Environment table with (adjusted)
meansis avail able.

This table can be anaysed in a straightforward way with a smple two-way anaysis of
variance procedure, in particular a model with the overal mean, a genatype main effed, an
environment main effed, and a genatype-by-environment (GxE) interadion may be used.
Whether a red residual term is present depends on the usage of raw data with severa
replicaions (error term present) or the usage of environment means or equivaently no
replicaions (no error term present). In the latter case, one might consider the two-way (or first-
order) interadion as the aror term. The latter pradiceis, hovever, wasteful and incorred when
there ae many levels for either rows or columns or bath, becaise generaly there is a (large)
amourt of structure in the two-way interadion. Moreover, often it is the structure in this
interadion which is the focus of the analysis. There ae many ways in which a GxE table can be
modelled, and Table 1 gives an owerview of some of the propcsals withou claiming
completenessor originality.
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Tablel
Some models for two-way GxE-tables'
Equation Description
1. Xj=u+g+eg main effeds
2. Xj=u+g+g+Agg Tukey (1949 1-df for interadion model
3. Xj=u+gitg+Ag Finlay-Wilkinson (1963 regresson on the
environment mean; joint regresson anaysis
4. Xj=u+git+g+az regresson onan external variable z
5. Xj=u+gi+g+Auy main effeds plus 1 multi pli cative term
6. Xj=pu+g+g+ SpAplipVip main effeds plus P multiplicaive terms (due to
Mandel, 1972); also cdled AMM I-model®
7. Xj=u+ g+ SpAplipVip genatype man effed is included in the
mullti pli cative model
Xij=Xj-u-§ X%j isthe centred version d x;;
= ZpApUipVip
8. Xj=pu+§+SZpAlipVip i environment standardised version d x;;
X" = (Xj - - 8)ls § is the scding fador of the j-th environment
(usually standard deviation)
1 =: ismodelled hy; for equality an error term shoud be alded;
2 AMMI (Additive Main eff eds and Mullti pli ctive Interadion model) is a name sporsored by Gaugh (see eg.
Gaugh, 1988
3 model recommended by Cooper & Delagy (19949 for use with seledion.

When there is a large table with interadion, there is a nead for methods to analyse the two-
way interadion in such a way that, if there ae systematic patterns present, they can be reaily
asessd and their relevance can be evaluated. Plots which show bath the genatypes and the
environments smultaneoudly can be of grea asgstance in this resped, and these plots, cdled
biplots (Gabridl, 1977, are the subjed of this report. The prefix bi refers to the smultaneous
display of both rows and columns of the table, and nd to the two-dimensiondlity of the plots.

Generdly, when ore has a table of G genotypes and E environments, there ae & most
min(G,E) dimensions possble. For definiteness ske, we will assimein the sequel that there ae
more genatypes than environments, so that G is greaer than E and thus there ae amost E
dimensions posshle. As displays of more than two dmensions are generaly difficult to make
and even more difficult to interpret, most biplots sow only two dmensions. Obviously, ore
wants a display in which the interadion between genatypes and environments is presented as
well as possble. In ather words, ore wants to dsplay thase dimensions which acourt for the
maximum amourt of variation in the table. Thisimplies that we have to find a procedure which
provides us with the "best' representation in low-dimensiona space The appropriate tod for this
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is derived from a theorem presented by Eckart-Young (1936), and the technique is caled the
singular value decomposition (SvD). This technique provides us with coordinates on dimensions
(or directions in space); in the mathematical literature these dimensions are called singular
vectors. The dimensions are arranged in such away that they are orthogonal, i.e. at right angles,
and successively represent as much of the variation as possible (see the Appendix for an
elementary introduction into vectors, and concepts such as orthogondity). Moreover, the
technique provides us with measures (singular values) which, if squared, indicate the amount of
variability accounted for by each dimension. To display the main variability in the table in a
two-dimensiona graph, we should use the first two dimensions.

2. Singular value decomposition

2.1 Basictheory

Suppose that we have a two-way data matrix X with information on a single attribute, say
yidld, for G genotypes in E environments, and that there are more genotypes than environments,
so that min(G,E)=E. The singular value decomposition svD of the matrix X is defined as

X=UAV', (1)

which may be written in summation notation as
S
Xge— ZASUgsV&- (2)
S=

where Sis in most practical cases equa to E, i.e. we generally need E terms to perfectly
reproduce the original matrix X. The scalars As are the singular values arranged in decreasing
order of magnitude, (us) is a set of genotype vectors (the left singular vectors), and (vs) is a set of
environment vectors (the right singular vectors). In both sets the vectors are orthonormal, i.e.
they are pairwise at right angles and have lengths equal to one. U and V are matrices which have
the vectors us and Vs as their columns, respectively. If the entries in the table are the interactions
from atwo-way analysis of variance on the original table (Model 6 of Table 1), then both us and
the vs are centred, i.e. each column of U and V has a zero mean, because the origina table of
interaction effects is centred. Moreover, in this case Sis at most E-1, because centring reduces
the number of independent dimensions by one.

The us and Vs are used to construct the coordinates for graphical representations of the data.
In particular, they can be combined with the singular values )\s in different ways, of which the
following two versions are the most common ones:

S S
Xgo= Zugs(/\sves)= Zygsza ©)
S S
Xoe= 3 (UpAP?)(VaA®)= S Vi 2 4)
=1 s=1

where the y and the z are the genotype and environment coordinates of the first version
(principal component scaled version), and y and the z those of the second version
(symmetrically scaled version), respectively (see section 3.3).
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2.2 Low-dimensional approximation
To find a low-dimensional approximation d X we have to minimise the distance between

the original matrix and the gproximating matrix, X . This (Euclidean) distance between two
matrices, X=(Xge) and X= (Rqe) , is defined as
and the Eckart-Yourg (1939 theorem shows that the best two-dimensional |least-squares

d(x.X):J Zz(xx)z ©)

approximation d the matrix X can be ohbtained from the svD of X by summing only the first two
terms of equation (2).

2.3 Quality of approximation

To evaluate the quality of the gproximation, we have to knov how much o the origina
variability of X is contained in the gproximating matrix X . The total variability in a matrix,
here defined as the uncorreded sum of squares, is equal to the sum of squared entries in the
table,

G E
Total variability= s5,= [X|* = 2 2 Xie (6)
g=1 e=

where _X_1 is cdled the norm of X. Becaise of the least-squares properties of the singular
value decomposition, the norm can be split i nto an explained and aresidua part, i.e.

X=X ¥

“+x-x @

Furthermore, ore can use the orthonamality of U and V to show that this equation may be
expressed in terms of the singular values, i.e.

S 2 S
;/\F ;/\§+ ;/\é. (8)

Equeation (8) shows that the sum of the first two squared singular values divided by the total sum
of the squared singular values will give the propation d the variability aceourted for by the
first two singular vedors. Large propartions of explained variability will obviously indicate that
the plot based onthese two singular vedors will give agood representation d the structure in
the table. If only a moderate or low propation d the variability is acourted for, the main
structure of the table will still be represented in the graph, bu some parts of the structure may
reside in higher dimensions. If the data ae environment centred, genatypes locaed nea the
origin might either have dl their values close to the environment means, or their variability is
located in another dimension. Similarly, environments close to the origin may have little
variability or may nat fit well intwo dmensions.

3. Biplots
The most common graph to patray the relationships in atable is the biplot (Gabriel, 1971,
1981,Gabriel & Odoroff, 1990, Kempton, 1984. Fig. 1-5 are the biplots of our examples.
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3.1 Standard biplots
A standard hiplot is the display of a GxE (interadion) table X decompaosed into a p[odu:t

YZ’ of a GxS matrix Y=(ygs) and an ExS matrix Z=(z). Using this decompasition for X, the
two-dimensional approximation d X ead element Xqe of thismatrix can be written as

Kge= ygl Zat ygz Zeo s (9)

which is the inner (or scalar) product of the row vedors (Yg1, Yg2) and (ze, ze); for further
information oninner products seethe Appendx. A biplot is obtained by representing ead row
as apaint Yg with coordinates (yq1, Yg2), and ead column as paint Ze with coordinates (ze1, Ze)
in a two-dimensiona graph (with aigin O). These points are generdly referred to as row
markers and column markers, respedively. Sometimes the word "markers is also used for the
coardinate vedors themselves. Because it is nat easy to evaluate markersin athreedimensiona
space the most commonly used hplots are two-dimensional, which thus display the best
rank-two approximation d a matrix X. With the aurrent state of graphicd software, it is likely
that threedimensional biplots will become more @wmmon. A straight line through the origin O
and apoaint, say Ze, is often cdled a biplot axis, and is written as OZe, nd to be confused with a
coordinate ais.

If we write Yy” for the orthogonal projedion d Yy on the biplot axis OZe, 84 for the angle
between the vedors OYy and OZe, and write | OZ | 2 for the length of avedor OZ, then we have

the geometric equivaent of equation (9) (see &so the Appendix)

XgezlOze”OYglcoiege)zloze”OYg”l' (10)
y Y
02 9
z - A R =l ]
° 1 1
Yg ] q'. 1 k! :
. Y | ]
\ g
) y
3. y91 of
- Y;'
Figurel Representation d two genatype markers and ore environment marker in a

biplot.
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Equation (10) showsthat Rqe is propationd to the length of OYy"”, |OY ¢ |. Thisrdationship is

of course true for any other genatype g’ as well. Thus the relationships or interadions of two
genatypes with the same environment can be asessed simply by comparing the lengths of their
projedions onto that environment. Furthermore, the relationship o interadion ketween a
genatype vedor OYy and an environment vedor OZ. is positive if their angle is aaite, and
negative in the cae of an oltuse angle. When the projedion d a marker Yy onto the
environment vedor OZe coincides with the origin, Xge IS equa to zero, and the genatype has

approximately a mean value for that environment given that the data were environment centred
(Models 7 and 8,Table 1). A positive value for Rqe indicaes that genotype g has high score in

environment e relative to the average score in that environment, and a negative value indicaes
genatype g has arelatively low score in environment e.

In graphs, the genotype markers Yy are generaly represented by paints, and the environment
markers Ze by vedors, so that the two types of markers can be dealy distinguished. This chaice
is preferred becaise genotypes are compared with resped to an environment rather than the
reverse.

3.2 Calibrated biplots

Because inner products between the ordinates of the genatype markers Yy and those of a
column marker Ze vary linealy along the biplot axis OZ, it is possble to mark (or cdibrate) the
biplot axis OZe linealy in such away that the Xge can be diredly read from the graph (Gabriel

& Odoroff, 1990 Greenaae, 1993. Note that the gproximate value Xy does not depend on
the pasition d Yy, bu only on the orthogonal projedion Yy onto the ais OZe. When a data

matrix is centred as is the cae with environment centred data, the gproximating matrix is
centred aswell, andavalue of R4 equa to zero means that, in the e-th urcentred environment,

genatype g has a value gproximately equa to the mean o the e-th environment. One coud
mark the biplot axes acwrding to the (approximations of) the environments acwrding to the
centred values. However, sometimes it is aso informative to replacethe centred values with the
‘red"' values by adding the observed means. After this decentring, the origin indicates the true
mean values for the environments, rather than zero for al of them.

3.3 Two different versions of the biplot

In sedion 2.1the two most common ceampasitions of X were presented bah based onthe
SvD. These two decompositions leal to dfferent biplots with dfferent properties. Equations (3)
and (4) show that the values of the inner products between genotype and environment markers
are independent of the version wsed, so that in this resped the two versions are equivalent.
However, when looking at the relationships within ead set of markers, the two decompositions
lead to dfferent interpretations.

With the principal comporent scding (equetion (3)) the genotypes are in so-cdl ed standard
coordinates, i.e. they have zero means and unt lengths, and the environments are in principal
coordinates, i.e. they have unrestricted means and lengths equal to the asciated singular
values. If in the data matrix X the environments are standardised, then the wordinates of the
environments may be interpreted as correlations between the environments and the wordinate
axes. Here, all biplotswill have thistype of scding.

With the symmetricd scding (equation (4)) the crrelation interpretation canna be used,
because bath the genatype cmporents and thase of the environments have lengths equal to the
square root of the singular values. Therefore, this version shodd primarily be used when the



Introduction to kiplots 9

relations between the genatypes and the environments are the central focus in the analysis, and
nat the relations among genatypes and/or among environments, or when the row and column
variables play a omparable role in the analysis. The alvantage of the representation is that
lengths of the environment and the genotype vedors in the biplot are gpproximately equal. With
principal comporent scding it can easily happen that the genotypes are concentrated aroundthe
origin o the plots, whil e the environments are located ontherim, and viceversa

3.4 Interpretational rules

An important paint in constructing the adual graphs for biplotsis that the physical vertical
and horizontal coordinate axes should have the same physical scale. This will ensure that
when ore projeds genatypes on an environment vedor, they will end upin the crred place
Faili ng to adhere to this scding will make it impossble to evaluate inner products in the graph.

The most basic property of any kind d biplot of atable & aparticular dimensiondlity, is that
the inner product of arow (genctype) vedor and a wlumn (environment) vedor in the plot is
the best approximation to the the arrespondng value in the table. If thereis a perfed fit in, say
two, dmensions, then the inner products are identicd to the values in the table. The maority of
the rules given below follow from this basic property. Addtional interpretations bemme
available if speda treaments have been applied to (1) the rows and/or columns, such as
centring and standardisation, and (2) to the mordinate axes, such as principal comporent scding
and symmetric scding. Below we will only present those interpretational rules which we think
are relevant for GxE tables, in particular we will nat consider the situation when the original
table is analysed withou centring.

General (irrespective of scaling coordinate axes)

* genoatypes are perferably displayed as paints and environments as vedors;

* if two genotype vedors have asmall angle, they have similar resporse patterns over
environments,

* if two environment vedors have asmall angle they are strongly associated.

Centred per environment

* the biplot displays the table of genotype main effed plus the two-way interadion (Model
7inTablel);

* genatypes arein deviationfrom the average for eat of the environments;

* the origin represents the average value for ead environment, i.e. it represents the
genotype which has an average value in eat environment. This average genotype has a
value of zero in the centred data matrix;

* a genatype with a large distance from the origin hes a large genatype plus interadion
effed;

* thelarger the projedion d a genctype on an environment vedor, the more this genatype
deviates from the average in the eavironment;

Centred per environment and per genotypes

» the biplot displays the two-way interadion table; there ae & most min(G,E) dimensions
or coordinate axes (Modd 6in Table 1);

* both genatypes and environments are in deviation from their averages,

* the origin represents the average value bath for eat environment and for ead genatype
aaossal environments;

* a genatype (environment) with a large distance from the origin haes a large interadion
effed with at least one environment (genctype);

* thelarger the projedion d a genctype on an environment vedor, the more this genatype
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deviates from the average in the environment, and vice versa.

Principal component scaling: U and VA (Principal component biplot)
Centred per environment

* the cosine of the angle between any two environments approximate their correlation
with equality if thefit is prefect;

* the lengths of the environment vectors are approximately proportiona to the standard
deviations of the environments with exact proportionaity if thefit is perfect;

* the inner product between two environments approximates their covariance with
equality if thefit is perfect;

* the euclidean distance between two genotypes does not approximate the distances
between their rows in the origina matrix but their standardised distance, which is the
square root of the so-called Mahalanobis distance (for further details, see Gabriel, 1971,
p. 460ff.);

* environments can have much longer vectors than genotypes, making visua inspection
awkward; a partia remedy is to multiply al environment coordinates with an arbitrary
constant, which will make the relative lengths of the environment and genotype vectors
comparable. Note, however, that there is no obligation to use such a constant, and that it
is an ad-hoc measure.

Sandardised per environment

* the lengths of the environment vectors indicate how well the environments are
represented by the graph with a perfect fit all vectors have equal lengths;

* theinner product between two environments (and the cosine of the angle between them)
approximates their correlation with equality if thefit is prefect;

Symmetric scaling: UA” and VA™
* if two environment vectors have a smal angle, they are highly correlated, but their
correlation cannot be deduced from the graph; similarly the association between the
genotypes cannot be properly read from the graph;
* due to the symmetric scaling of environments and genotypes, both are located in the
same part of the space and inner products are easily assessed.

4. Exampleswith perfectly two-dimensional data

To illustrate some of the properties, biplots will be presented of three variants of a small
data set, each of which fits perfectly in two dimensions. The first analysis will be with raw data,
in the second one the environment means have been removed (Model 7 of Table 1), and in the
third analysis each centred environment has been scaled with its standard deviation (Model 8 of
Table 1). The data sets have been derived from each other, but it is impossible to create
perfectly two-dimensiona centred data by centring a perfectly two-dimensional raw data set, in
contrast to creating the standardised data set from the centred one. Because the data sets are fit
perfectly in two-dimensions, the biplot will exactly represent the origina data. This means, for
instance, that the inner products calculated from the biplots are equal to the data themselves.
Moreover, the standard deviations of the environments can exactly be gauged from the biplot
from the lengths of the environment vectors. If the data had been three-dimensiona, these
lengths would only have been an approximation. Furthermore in cases of imperfect fit, large
data values will be represented by large inner products, small data values by small inner
products, but not al values in the origina data matrix will be fitted equally well by the inner
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products.

4.1 Raw data

Raw data have not undergone any preprocessing, i.e. centring and/or scaling, and therefore
the dimensions will be strongly influenced by the means. To show this the means of the
genotypes and the environments have been included in Table 3. Table 3 shows the (near) perfect
rank correlation between the first dimensions and the means for both the environments and the
genotypes, indicating that these dimensions represent the differences between the means.

Table 2. Raw Data
Envi ronnent s

CGenot ypes A B C
Gl .7316 1.4522 .8412
G2 .7665 1.5404 .8812
G3 .6972 1.4712 .8007
G4 .7662 1.5767 .8803
G5 .7358 1.2862 .8481
G6 .6496 1.4294 .7453
G7 .6997 1.1826 .8071
G8 .6330 1.4379 .7257
G9 .7120 0.0251 .8355

Length 2.135 4.037 2.460
(o) 0.047 0.481 0.055
S 0.044 0.454 0.051

From Table 3 and Fig. 2 and the size of the variability accounted for (97% and 3%,
respectively), the dominance of the first dimension is obvious. The cause is the strong
dominance of the means in the analysis. Fig. 2 is rather lopsided, because the representation of
the genotypes is in standard coordinates, and that of the environments in principal coordinates
with lengths equal to the singular values (5.11 and .81, respectively). Therefore, the vectors for
the environments are much longer than those of the genotypes.
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Figure 2 Biplot of the perfedly two-dimensional raw data (Note: The scding of the

horizontal and verticd axesisnat equal).
Table 3 Genotype and Environment Coordinates for the Raw Data

Componentss Components(1

Genotypes Mean 1 2 Environments Mean 1 2

G4 1.07 .384 -.078 B 1.27 3.998 -.549

G2 1.06 .378 -.052 C 0.82 2.403 .528

Gl 1.01 .358 -.036 A 0.71 2.086 .444

G3 0.99 .355 -.097

G6 0.94 .339 -.132

G8 0.93 .337 -.161 length 5.11 0.81

G5 0.96 .334 .088 proportion

G7 0.90 .311 .113 explained .97 .03

G9 Q.52 138 957

$ standard coordinates; £ principal coordinates

4.2 Data centred by environments

The raw data have been processed by subtrading the environment means in acerdancewith
Mode 7 o Table 1. Subsequently, they have been adjusted to make them perfedly two-
dimensiond.

Again the representation d the genatypes is in standard coordinates, and that of the
environmentsisin principal coordinates (lengths 4.75and 2.11 respedively) makes the
vedors for the environments longer than those for the genatypes, but nat as much as for the raw
data (Table 5). If we docse 4 as an arbitrary appropriate constant to adjust (here divide) all
environment coordinates, the plot is more balanced and easier to real (seeFig. 3).

The length | Alof Environment A follows from | Al = v (.9402+ 1.9713 = V4.77 = 2.18,

which may be foundfrom the Fig. 3 (kegoing in mind the aljustment fador of 4). The length of
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Genotype 6 is |G6| = v (.3572+-.3193 = .479. The inner product of Genatype 6 and
Environment A is .35%.940+ (-.319x1.971 = -.296, which is equa to the data vaue for
Genotype 6 in Environment A, becaise of the perfed fit. The cosine of the angle between
Genatype 6 and Environment A, cosBesa is the inner product divided by the lengths of the
vedors, o -.296(2.18x .479 = -.28 and the angle 8es,A = 106°. The projection of Genotype 6
onto the Environment A is the vedor G6"” and its (signed) length is equal to the length of
Genatype 6 times the wsine of Besa or | G6|3c0s8esa = .479x% -.296 = -.142 where the minus
sign indicates that the projedion is on the oppasite side from the origin from Environment A.
The lengths of the environment vedors are proportional to their standard deviations. The
badkgroundfor the cadculationsis contained in the Appendix.

Table 4 Environment Centred Data

Environments

Genotypes A B C
Gl 0.6344 0.2027 -0.0968
G2 0.6121 0.9796 0.4942
G3 -1.2009 0.3766 0.7531
G4 0.6725 1.0540 0.5263
G5 -1.1453 1.4442 1.5314
G6 -0.2939 -1.4933 -1.0039
G7 -0.3331 -0.0537 0.0904
G8 0.6709 -2.5429 -2.1688
G9 0.3833 0.0326 -0.1258

Length 2.19 3.61 3.03

(o} 0.73 1.20 1.01

S 0.77 1.28 1.07

Table5 Genotype and Environment Coordinates for the Environment Centred Data

Components Components

Genotypes 1 2 Environment 1 2 Length
G8 .718 -.003 A 0.940 1.971 2.19
G6 .357 -.319 C -3.018 -0.232 3.03
G9 .028 .181 B -3.536 0.723 3.61
Gl .008 .318
G7 -.018 -.160 length 4.75 2.11
G2 -.195 .403 proportion
G4 -.208 .440 explained .83 .17
G3 -.210 -.508
G5 -.478 -.354 A B
sum .000 .000 correlations B -.24
length 1.000 1.000 C —-.50 96

In Fig. 3 projections of al genotypes onto Environment A have been drawn, and the
relative performance of the genotypes in Environment A can directly be read from the graph.
When the data are not perfectly two-dimensional, the inner products and thus the lengths of the
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projections are only approximations to their real values. Note that the direction of the
environment is of vital importance in assessing whether genotypes perform above or below
average. Furthermore, note that it is not the closeness of a genotype point to the environment
vector, but the size of the projection that determines the relative performance in an environment.
For instance, Genotype 9 is much closer to the environment vector than Genotype 8, but the
projection of Genotype 8 islarger (.6709) than that of Genotype 9 (.3833), see Table 4. It isthus
incorrect to use a Euclidean distance (as one would measure with a ruler) between an
environment point and a genotype point to assess their relationship.

Measuring the angles between the environments from the graph or calculating them from
the coordinates gives Bap = 104°,6ac = 120°, Bg.c = 16°, corresponding to correlations or
coSiNes of rap =-.24, rac =-.50, and rpc = .96.

4.3 Data standar dised by environments

The environment centred data can be scaed without effecting their perfect two-
dimensionality, which makes direct comparison of the results possible. We have used the
(population) standard deviation g, i.e. without degrees of freedom corrections. Alternatively, we
could have used s.

06

04

02

0.2

04

06

-1 — 05 | 0 — 05 | T
Figure 3 Biplot for the perfectly two-dimensional centred data
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Table 6 Environment Standardised Data

Environments

Genotypes A B C
Gl 0.8707 0.1684 -0.0959
G2 0.8401 0.8139 0.4894
G3 -1.6483 0.3129 0.7457
G4 .9230 0.8757 0.5211
G5 -1.5719 1.1998 1.5164
G6 -0.4034 -1.2406 -0.9941
G7 -0.4572 -0.0446 0.0895
G8 0.9208 -2.1126 -2.1476
G9 0.5261 0.0271 -0.1246

Length 3.00 3.00 3.00

g 1.00 1.00 1.00

s 1.06 1.06 1.06

From Table 7 we see that all environments have equal length vectors, and in the graph they
are necessarily equa as well. When the fit is not perfect, the differences in lengths indicate
differencesin fit of the environmentsin the two dimensions shown in the biplot. Fig. 3and 4 are
fairly similar, because the standard deviations of the environments were not very different (see

Table 4).
0.8

04

0.2

0.2 s

04

0.6
4 05

Figure4

05

Biplot of the perfectly two-dimensional environment standardised data.
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Table 7 Genotype and Environment Co-ordinates for the Environment Standardised Data

Genotypes 1 2 Environments 1 2 Length
G8 .703 -.145 A 1.804 2.397 3.00
G6 .287 -.384 B -2.764 1.169 3.00
G9 .063 172 C -2.977 0.366 3.00
Gl .070 .310
G7 -.049 -.154 length 4.44 2.69
G2 -.111 .434 proportion
G4 -.117 .473 explained .73 .27
G3 -.307 -.457
G5 -.540 -.250
sum .000 .000

length 1.000 1.000

5. Example: M exican maize data

Ten tridls were conducted to evaluate gains with reaurrent (S, or full-sib) seledionin open-
palinated genatypes from three late tropicd maize popuations (La Posta Sequia, Pod 26
Sequia ad Tuxpefio Sequia) that have been espedaly sdleded &t CIMMYT for tolerance to
drought aroundflowering. The popuations have been improved by evaluating and recombining
superior families based on their performance under managed drought environments and an
irrigated environment. Five of the trials sujjeded the plants to drought while the other trias
were well-watered. The data were analysed to determine gains with seledion and to determine
how grain yields and aher traits had been affeded by seledion. Included in the trials were three
ched cultivars which had been improved by conventia breeding. Full details abou the trias
and the analyses as well as al references can be found in Chapman, Edmeades, & Crossa
(1996.

Here the yield data will be mnsidered to show the biplot at work with red data in a cae
where there is no perfed fit. The raw location means were standardised by environments (see
Model 8, Table 1). The @-ordinates for the two-dimensional biplot in PCA-scding are given in
Table 8, and the biplot itself in Fig. 5. The two dmensions represent 69% of the variationin the
origina G+GxE array. A third comporent acourts for an additional 12%.

Given the environment standardisation d the data the wsines between the angles of two
environments represent the best approximation to their correlations in two dmensions. Thus
water-stressed environments (including the well-watered, bu iron-deficient environment 6) are
highly correlated with nad much dff erence between the intermediate (1,5 and severely stressed
environments (2,4). Thereis a dea distinction between stressed and norstressed environments,
apart from environment 3, which takes an intermediate position. The genotypes do nd cluster
acording to popuation, bu there is a dea progresson with seledion for ead popuation
towards increasing yield espedally in stressed condtions, as is evident from the negative
projedions of L1, T1, and P1 onthe vedors of the stressed environments, i.e. they had below
average yield in thase environments. Early seledions of Tuxpefio and Pod 26 hed aso below
average yields average in nonstressed environments (7,8,9,10. The latest seledions (L4, T3,
and P3) al have pasitive projedions on the stressed environments, i.e @ove averageyields. The
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increase has been most spedaaular for Tuxpefio. La Posta yielded above average and continued
to do so, dthowh continued seledion after L3 led to an incresse in yied in stressed
environment, bu a deaease in the nonstresed environments. From the present data, it is
difficult to judge whether thisis a systematic or acadental deviation from the pattern. The dhedk
cultivars which have gone through convential seledion dd na improve their drought tolerance,
as evident from their below average projedions onthe environment vedors.

Table 8: Genotype and Environment Coordinates for the Mexican Maize Yield Data

Genotypes Components Environments Component s

Variety' Abbr. 1 2 No. Water Regime Year’ 1 2

5 Check La P. CL -.48 .17 4 Severe Stress 1992W .90 .02

1 La Posta Cg Ll -.27 .18 5 1Interm Stress 1992W .90 -.13

2 La Posta C; L2 -.27 .27 2 Severe Stress 1993w .86 -.15

3 La Posta C; L3 .02 .50 1 Interm Stress 1993W .80 .00

4 La Posta C; L4 .11 .34 6 Well-Watered® 1992w .78 .16
3 Interm Stress 1993S .86 .45

9 Check Pool CP -.11 -.06 8 Well-Watered 1993W .29 .74

6 Pool 26 C; Pl -.07 -.45 9 Well-Watered 1992w -.14 .80

7 Pool 26 C, P2 .16 -.12 10 Well-Watered 19928 -.22 .63

8 Pool 26 C; P3 .26 -.11 7 Well-Watered 19928 -.42 .51

10 DTP1 Cs D1 .53 -.00

11 DTP2 C; D2 .22 .07

15 Check Tuxp. CT -.02 -.25

12 Tuxpezro Co T1 -.33 -.40

13 Tuxpeto Cg T2 .02 -.20

14 Tuxpezo C; T3 .24 .07

Proportions Explained variability

—(=Squares of singular values) : Comp, 1: .47: Comp, 2: ,22: Total: .69

'The names of the varieties have been simplified; for a full description see Chapman et al. (1996); The
official name for variety 14 is TS6.

2W=Winter; S=Summer.

’This environment was well-watered but suffered from iron deficiency, which had an adverse effect on yield.

4 . . : :

The environment coordinates have been divided by 4.

6. Relationship with PCA

In principa component analysis we are looking for that linear combination c=Xb which
accounts for the largest amount of variation in a set of variables X. The standard solution to this
problem is constructing the sums-of-sgquares-and-cross-products matrix (or after centring and
scaling the correlation matrix) X’X, and decomposing it (via the eigenvectors and e genval ues)
in VA“V, furthermore XX’ can be decomposed into UA?U”, It can be shown that U, V, and A are
the same as the matrices defined in equation (1). Moreover, cis equd to the first column of U
and b is equal to A1 times the first column of V. In other words, principal component analysis
corresponds to the factorisation of equation (9). The parameters for a principal component
analysis can thus directly be derived from the singular value decomposition. However, in PCA it
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is general pradice that X’X is a @rrelation matrix, while this assumption is nat made for the
singular value decomposition. What this srowsisthat PCA isredly aprocedure with two steps,
i.e. a centring and scding followed by a (singular value) decomposition. The separation d these
two steps is generally not emphasised in genotype by environment analyses but it becmes
essential when analysing threeway data of genotypes by environments by attributes.

08 9

04

02

Wl P1/

06 |
06 04 02 0 02 04 06 08 1

Figure5: Biplot for Mexican Maize Yield Data

(Legend: P = Pod 26, L = La Posta; T = Tuxpefio; Ch* = Chedk of *; D = Drought
Resistant Varieties 1& 2)
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APPENDIX
Some basic vector geometry relevant to bipl ots®

The interpretation of biplots depends heavily on properties of vectors in the plane or three-
dimensiona space. This appendix provides a minimal introduction into the most basic
properties of vectors leading up to the ideas of inner products and projections.

Vector: Symbol: x or X

(Fig. 6A) A vector isadirected line segment; it has alength and a direction. Mostly vectors
in biplots start at the origin, the point (0,0) in a two-dimensional biplot. The
coordinates of X in the two-dimensiona case are (x1,X2), where X1 isthe value on
the horizontal coordinate axis and x. the value on the vertical coordinate axis.
Therefore, avector X runsfrom (0,0) to (X1,X2).

Length: The length of avector isindicated by OX [J, and it is found viathe

(Fig. 6A) Pythagorean theorem (a’=b*+c%): X 1= V(x1*+x2") = V (i Xi°).

Scalar multiplication:

(Fig. 6B) Y =aX. The vector Xis multiplied by a scalar a, and the resulting vector Y has

the same direction as X, but isatimesaslong. Thus Y 0= aJX [, and y1 = ax1

+ axo.
Addition: Z = X+ ¥, with coordinates z1 = x; + y1 and z2 = X2 + Y.
(Fig. 6C)
Qubtraction: Z =X -Y or Z =X +(-Y) with coordinates z; = x1 - y1 and z2 = X2 - Yo.
(Fig. 6D)

Linear combination:
(Fig. 7A) Z = X + byY, which is a combination of vector addition and scaar
multiplication.

Angle: The angle between two vectors can be directly read or measured from a

(Fig. 7B) graph, and we will indicate an angle between X and Y as 6y. The angle can be
computed algebraicaly viathe inner product or dot product.

Inner product/Dot product:
The dot product between two vectors is indicated by XX when using vector
geometry, and by X'y when X and Y are considered vectors. In the latter case
the product isreferred to as the inner product or scalar product of X and Y.
The dot product isdefined as X¢¥ = x1y1 + X2y Or in more geometric terms. X ey
= OX[0Y [OcosBy, Which is the length of X times the length of Y times the
cosine of the angle between them.

“Abstracted from Thomas, D. Wickens (1995). The geometry of multivariate statistics. Hillsdale, NJ: Erlbaum.
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Calculation of angle:
First caculate the cosine of the angle: cos@y = (X4+Y5)/O0X6Y 70, then
convert the cosine to an angle via the "inverse cosine" button on your pocket
calculator or look it up in atable.

Secial angles:

(Fig. 8A) By =0° _, cosGy=1: X8and Y9 arecollinear, i.e. they lie on the samelinein
the same direction; ¥ 10 = bX 11 with b>0; X 12 is collinear with itsalf 8«=0;

(Fig. 8B) Gy = 180° _, cos By = -1: X13 and Y 14 are callinear, i.e. they lie on the same
line but in opposite directions; Y 15 = bX 16 with b<0;

(Fig. 8C) By = 90° -, cos By = 0: X17 and Y18 are orthogonal (perpendicular);
X19.y20=0.

Projection:

(Fig. 8D) The projection Y21' of ¥22 on X 23 isavector collinear with X 24 which can be
found by dropping a perpendicular line from Y25 onto X 26 (see figure). Thus
y 27 =dX 28. Thelength of Y29 is Y 3001c0s8y, and d = (X 31+ Y 32)/1% 33

Equality between cosines and correlations:
If the environments are centred, then the cosine of @qy,the angle between two
environments X34 and Y 35 isequal to their correlation ryy,

S(x-X)(Yi-y)  _ IxY = %Y _ coso

P XSy 3RSy XY

where we have used the fact that the means are zero.




