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 Abstract 
 
 This report contains an introduction to biplots, a technique to display large tables in a 

graph. The construction and interpretation is explained at a fairly basic level and is 
directed at plant breeders. The technique is illustrated with several artificial data sets as 
well as a real one from maize breeding in drought conditions. 
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1. Introduction 
 Plant breeders typically conduct large-scale trials to investigate the performance of large 
numbers of genotypes in several environments with the aim of selecting the ̀ best' genotypes for 
the purpose of further improvements of crops. The data from such trials consist of the scores on 
one or more attributes for each genotype in each environment, barring missing data. Generally 
data from several replications are available and the raw results need to be analysed by 
sophisticated analysis of variance techniques to assess blocking effects, to estimate variance 
components, etc. (see among others, Searle, Casella, McCulloch, 1992, and the course notes by 
Culli s and Gilmour, 1995). For the purpose of this report, we assume that such analyses have 
been carried out, and that for further analysis a Genotype by Environment table with (adjusted) 
means is available. 
 This table can be analysed in a straightforward way with a simple two-way analysis of 
variance procedure, in particular a model with the overall mean, a genotype main effect, an 
environment main effect, and a genotype-by-environment (G×E) interaction may be used. 
Whether a real residual term is present depends on the usage of raw data with several 
replications (error term present) or the usage of environment means or equivalently no 
replications (no error term present). In the latter case, one might consider the two-way (or first-
order) interaction as the error term. The latter practice is, however, wasteful and incorrect when 
there are many levels for either rows or columns or both, because generally there is a (large) 
amount of structure in the two-way interaction. Moreover, often it is the structure in this 
interaction which is the focus of the analysis. There are many ways in which a G×E table can be 
modelled, and Table 1 gives an overview of some of the proposals without claiming 
completeness or originality. 
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 When there is a large table with interaction, there is a need for methods to analyse the two-
way interaction in such a way that, if there are systematic patterns present, they can be readily 
assessed and their relevance can be evaluated. Plots which show both the genotypes and the 
environments simultaneously can be of great assistance in this respect, and these plots, called 
biplots (Gabriel, 1971), are the subject of this report. The prefix bi refers to the simultaneous 
display of both rows and columns of the table, and not to the two-dimensionality of the plots. 
 Generally, when one has a table of G genotypes and E environments, there are at most 
min(G,E) dimensions possible. For definiteness sake, we will assume in the sequel that there are 
more genotypes than environments, so that G is greater than E and thus there are atmost E 
dimensions possible. As displays of more than two dimensions are generally diff icult to make 
and even more diff icult to interpret, most biplots show only two dimensions. Obviously, one 
wants a display in which the interaction between genotypes and environments is presented as 
well as possible. In other words, one wants to display those dimensions which account for the 
maximum amount of variation in the table. This implies that we have to find a procedure which 
provides us with the ̀ best' representation in low-dimensional space. The appropriate tool for this 

 Table 1 
 Some models for two-way G×E-tables1 
 
  Equation   Description 
______________________________________________________________________ 
1. xij ≈ µ + gi + ej main effects 

2. xij ≈ µ + gi + ej + λgiej Tukey (1949) 1-df for interaction model 

3. xij ≈ µ + gi + ej + λiej Finlay-Wilkinson (1963) regression on the 

environment mean; joint regression analysis 

4. xij ≈ µ + gi + ej + λizj regression on an external variable zj  

5. xij ≈ µ + gi + ej + λuivj main effects plus 1 multiplicative term 

6. xij ≈ µ + gi + ej + Σpλpuipvjp main effects plus P multiplicative terms (due to 

Mandel, 1971); also called AMMI-model2 

7. xij ≈ µ + ej + Σpλpuipvjp genotype main effect is included in the 

multiplicative model 

 x′ij = xij - µ - ej x′ij is the centred version of xij 

                ≈ Σpλpuipvjp  

8. xij ≈ µ + ej + sjΣpλsuipvjp x′′ij environment standardised version of xij 

 x′′ij = (xij - µ - ej)/sj sj is the scaling factor of the j-th environment 

(usually standard deviation)3 

______________________________________________________________________ 
1
 ≈: is modelled by; for equality an error term should be added; 

2
 AMMI (Additive Main effects and Multiplicative Interaction model) is a name sponsored by Gaugh (see e.g. 

Gaugh, 1988) 
3
 model recommended by Cooper & DeLacy (1994) for use with selection. 
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is derived from a theorem presented by Eckart-Young (1936), and the technique is called the 
singular value decomposition (SVD). This technique provides us with coordinates on dimensions 
(or directions in space); in the mathematical literature these dimensions are called singular 
vectors. The dimensions are arranged in such a way that they are orthogonal, i.e. at right angles, 
and successively represent as much of the variation as possible (see the Appendix for an 
elementary introduction into vectors, and concepts such as orthogonality). Moreover, the 
technique provides us with measures (singular values) which, if squared, indicate the amount of 
variability accounted for by each dimension. To display the main variability in the table in a 
two-dimensional graph, we should use the first two dimensions.  
 
 
 
2. Singular value decomposition 
 
2.1 Basic theory 
 Suppose that we have a two-way data matrix X with information on a single attribute, say 
yield, for G genotypes in E environments, and that there are more genotypes than environments, 
so that  min(G,E)=E. The singular value decomposition SVD of the matrix X is defined as 

which may be written in summation notation as  

where S is in most practical cases equal to E, i.e. we generally need E terms to perfectly 
reproduce the original matrix X. The scalars λs are the singular values arranged in decreasing 
order of magnitude, (us) is a set of genotype vectors (the left singular vectors), and (vs) is a set of 
environment vectors (the right singular vectors). In both sets the vectors are orthonormal, i.e. 
they are pairwise at right angles and have lengths equal to one. U and V are matrices which have 
the vectors us and vs as their columns, respectively. If the entries in the table are the interactions 
from a two-way analysis of variance on the original table (Model 6 of Table 1), then both us and 
the vs are centred, i.e. each column of U and V has a zero mean, because the original table of 
interaction effects is centred. Moreover, in this case S is at most E-1, because centring reduces 
the number of independent dimensions by one. 
 The us and vs are used to construct the coordinates for graphical representations of the data. 
In particular, they can be combined with the singular values λs in different ways, of which the 
following two versions are the most common ones: 

where the y and the z are the genotype and environment coordinates of the first version 
(principal component scaled version), and y* and the z* those of the second version 
(symmetrically scaled version), respectively (see section 3.3).  
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2.2 Low-dimensional approximation 
 To find a low-dimensional approximation of X we have to minimise the distance between 
the original matrix and the approximating matrix, X̂ . This (Euclidean) distance between two 
matrices, X=(xge) and )x̂(=X̂ e g , is defined as  

and the Eckart-Young (1936) theorem shows that the best two-dimensional least-squares 

approximation of the matrix X can be obtained from the SVD of X by summing only the first two 
terms of equation (2).  
 
2.3 Quality of approximation 
 To evaluate the quality of the approximation, we have to know how much of the original 
variabilit y of X is contained in the approximating matrix X̂ . The total variabilit y in a matrix, 
here defined as the uncorrected sum of squares, is equal to the sum of squared entries in the 
table, 

where _X_1 is called the norm of X. Because of the least-squares properties of the singular 
value decomposition, the norm can be split i nto an explained and a residual part, i.e.  

Furthermore, one can use the orthonormality of U and V to show that this equation may be 
expressed in terms of the singular values, i.e. 

Equation (8) shows that the sum of the first two squared singular values divided by the total sum 
of the squared singular values wil l give the proportion of the variabilit y accounted for by the 
first two singular vectors. Large proportions of explained variabilit y will obviously indicate that 
the plot based on these two singular vectors will give a good representation of the structure in 
the table. If only a moderate or low proportion of the variabilit y is accounted for, the main 
structure of the table will still be represented in the graph, but some parts of the structure may 
reside in higher dimensions. If the data are environment centred, genotypes located near the 
origin might either have all their values close to the environment means, or their variabilit y is 
located in another dimension. Similarly, environments close to the origin may have littl e 
variabilit y or may not fit well i n two dimensions. 
  
3. Biplots 
 The most common graph to portray the relationships in a table is the biplot (Gabriel, 1971, 
1981, Gabriel & Odoroff , 1990, Kempton, 1984). Fig. 1-5 are the biplots of our examples.  
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2
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3.1 Standard biplots 
 A standard biplot is the display of a G×E (interaction) table X decomposed into a product 
YZ′′ of a G×S matrix Y=(ygs) and an E×S matrix Z=(zes). Using this decomposition for X̂ , the 
two-dimensional approximation of X each element x e gˆ  of this matrix can be written as 

which is the inner (or scalar) product of the row vectors (yg1, yg2) and (ze1, ze2); for further 
information on inner products see the Appendix. A biplot is obtained by representing each row 
as a point Yg with coordinates (yg1, yg2), and each column as point Ze with coordinates (ze1, ze2) 
in a two-dimensional graph (with origin O). These points are generally referred to as row 
markers and column markers, respectively. Sometimes the word `markers' is  also used for the 
coordinate vectors themselves. Because it is not easy to evaluate markers in a three-dimensional 
space, the most commonly used biplots are two-dimensional, which thus display the best 
rank-two approximation of a matrix X. With the current state of graphical software, it is likely 
that three-dimensional biplots will become more common. A straight line through the origin O 
and a point, say Ze, is often called a biplot axis, and is written as OZe, not to be confused with a 
coordinate axis. 
 If we write Yg′′ for the orthogonal projection of Yg on the biplot axis OZe, θge for the  angle 
between the vectors OYg and OZe, and write |OZ| 2 for the length of a vector OZ, then we have 
the geometric equivalent of equation (9) (see also the Appendix) 

 ,zy+zy=x e2g2e1g1e gˆ  (9) 

 .|OY||OZ=|)(|OY||OZ=|x gee ggee g ′′θcosˆ  (10) 

 

Figure 1 Representation of two genotype markers and one environment marker in a 
biplot. 
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Equation (10) shows that x e gˆ  is proportional to the length of OYg′′, |OY| g ′′ . This relationship is 

of course true for any other genotype g′ as well . Thus the relationships or interactions of two 
genotypes with the same environment can be assessed simply by comparing the lengths of their 
projections onto that environment. Furthermore, the relationship or interaction between a 
genotype vector OYg and an environment vector OZe is positive if their angle is acute, and 
negative in the case of an obtuse angle. When the projection of a marker Yg onto the 
environment vector OZe coincides with the origin, x e gˆ  is equal to zero, and the genotype has 

approximately a mean value for that environment given that the data were environment centred 
(Models 7 and 8, Table 1). A positive value for x e gˆ  indicates that genotype g has high score in 

environment e relative to the average score in that environment, and a negative value indicates 
genotype g has a relatively low score in environment e.   
 In graphs, the genotype markers Yg are generally represented by points, and the environment 
markers Ze by vectors, so that the two types of markers can be clearly distinguished. This choice 
is preferred because genotypes are compared with respect to an environment rather than the 
reverse. 
 
3.2 Calibrated biplots 
 Because inner products between the coordinates of the genotype markers Yg and those of a 
column marker Ze vary linearly along the biplot axis OZe, it is possible to mark (or calibrate) the 
biplot axis OZe linearly in such a way that the x e gˆ  can be directly read from the graph (Gabriel 

& Odoroff , 1990; Greenacre, 1993). Note that the approximate value x e gˆ  does not depend on 

the position of Yg, but only on the orthogonal projection Y g ′′  onto the axis OZe. When a data 

matrix is centred as is the case with environment centred data, the approximating matrix is 
centred as well , and a value of x e gˆ  equal to zero means that, in the e-th uncentred environment, 

genotype g has a value approximately equal to the mean of the e-th environment. One could 
mark the biplot axes according to the (approximations of) the environments according to the 
centred values. However, sometimes it is also informative to replace the centred values with the 
`real' values by adding the observed means. After this decentring, the origin indicates the true 
mean values for the environments, rather than zero for all of them. 
 
3.3 Two different versions of the biplot 
 In section 2.1 the two most common decompositions of X were presented both based on the 
SVD. These two decompositions lead to different biplots with different properties. Equations (3) 
and (4) show that the values of the inner products between genotype and environment markers 
are independent of the version used, so that in this respect the two versions are equivalent. 
However, when looking at the relationships within each set of markers, the two decompositions 
lead to different interpretations.  
 With the principal component scaling (equation (3)) the genotypes are in so-called standard 
coordinates, i.e. they have zero means and unit lengths, and the environments are in principal 
coordinates, i.e. they have unrestricted means and lengths equal to the associated singular 
values. If in the data matrix X the environments are standardised, then the coordinates of the 
environments may be interpreted as correlations between the environments and the coordinate 
axes. Here, all biplots will have this type of scaling. 
 With the symmetrical scaling (equation (4)) the correlation interpretation cannot be used, 
because both the genotype components and those of the environments have lengths equal to the 
square root of the singular values. Therefore, this version should primarily be used when the 
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relations between the genotypes and the environments are the central focus in the analysis, and 
not the relations among genotypes and/or among environments, or when the row and column 
variables play a comparable role in the analysis. The advantage of the representation is that 
lengths of the environment and the genotype vectors in the biplot are approximately equal. With 
principal component scaling it can easily happen that the genotypes are concentrated around the 
origin of the plots, while the environments are located on the rim, and vice versa.  
 
3.4 Interpretational rules 
 An important point in constructing the actual graphs for biplots is that the physical vertical 
and horizontal coordinate axes should have the same physical scale. This will ensure that 
when one projects genotypes on an environment vector, they will end up in the correct place. 
Faili ng to adhere to this scaling will make it impossible to evaluate inner products in the graph. 
 The most basic property of any kind of biplot of a table at a particular dimensionality, is that 
the inner product of a row (genotype) vector and a column (environment) vector in the plot is 
the best approximation to the the corresponding value in the table. If there is a perfect fit in, say 
two, dimensions, then the inner products are identical to the values in the table. The majority of 
the rules given below follow from this basic property. Additional interpretations become 
available if special treatments have been applied to (1) the rows and/or columns, such as 
centring and standardisation, and (2) to the coordinate axes, such as principal component scaling 
and symmetric scaling. Below we will only present those interpretational rules which we think 
are relevant for G×E tables, in particular we will not consider the situation when the original 
table is analysed without centring.  
 
General (irrespective of scaling coordinate axes)  
  • genotypes are perferably displayed as points and environments as vectors; 
  • if two genotype vectors have a small angle, they have similar response patterns over 

environments; 
  • if two environment vectors have a small angle they are strongly associated. 
 Centred per environment 
  • the biplot displays the table of genotype main effect plus the two-way interaction (Model 

7 in Table 1); 
  • genotypes are in deviation from the average for each of the environments; 
  • the origin represents the average value for each environment, i.e. it represents the 

genotype which has an average value in each environment. This average genotype has a 
value of zero in the centred data matrix; 

  • a genotype with a large distance from the origin has a large genotype plus interaction 
effect; 

  • the larger the projection of a genotype on an environment vector, the more this genotype 
deviates from the average in the environment; 

 Centred per environment and per genotypes 
  • the biplot displays the two-way interaction table; there are at most min(G,E) dimensions 

or coordinate axes (Model 6 in Table 1); 
  • both genotypes and environments are in deviation from their averages; 
  • the origin represents the average value both for each environment and for each genotype 

across all environments; 
  • a genotype (environment) with a large distance from the origin has a large interaction 

effect with at least one environment (genotype); 
  • the larger the projection of a genotype on an environment vector, the more this genotype 



Introduction to biplots  
 

10    

deviates from the average in the environment, and vice versa. 
 
Principal component scaling: U and VΛΛ (Principal component biplot) 
 Centred per environment 
  • the cosine of the angle between any two environments approximate their correlation 

with equality if the fit is prefect; 
  • the lengths of the environment vectors are approximately proportional to the standard 

deviations of the environments with exact proportionality if the fit is perfect; 
  • the inner product between two environments approximates their covariance with 

equality if the fit is perfect; 
  • the euclidean distance between two genotypes does not approximate the distances 

between their rows in the original matrix but their standardised distance, which is the 
square root of the so-called Mahalanobis distance (for further details, see Gabriel, 1971, 
p. 460ff.); 

  • environments can have much longer vectors than genotypes, making visual inspection 
awkward; a partial remedy is to multiply all environment coordinates with an arbitrary 
constant, which will make the relative lengths of the environment and genotype vectors 
comparable. Note, however, that there is no obligation to use such a constant, and that it 
is an ad-hoc measure. 

 Standardised per environment 
  • the lengths of the environment vectors indicate how well the environments are 

represented by the graph with a perfect fit all vectors have equal lengths; 
  • the inner product between two environments (and the cosine of the angle between them) 

approximates their correlation with equality if the fit is prefect; 
 
Symmetric scaling: UΛΛ½ and VΛΛ½ 
  • if two environment vectors have a small angle, they are highly correlated, but their 

correlation cannot be deduced from the graph; similarly the association between the 
genotypes cannot be properly read from the graph; 

  • due to the symmetric scaling of environments and genotypes, both are located in the 
same part of the space and inner products are easily assessed. 

 
4. Examples with perfectly two-dimensional data 
 To illustrate some of the properties, biplots will be presented of three variants of a small 
data set, each of which fits perfectly in two dimensions. The first analysis will be with raw data, 
in the second one the environment means have been removed (Model 7 of Table 1), and in the 
third analysis each centred environment has been scaled with its standard deviation (Model 8 of 
Table 1). The data sets have been derived from each other, but it is impossible to create 
perfectly two-dimensional centred data by centring a perfectly two-dimensional raw data set, in 
contrast to creating the standardised data set from the centred one. Because the data sets are fit 
perfectly in two-dimensions, the biplot will exactly represent the original data. This means, for 
instance, that the inner products calculated from the biplots are equal to the data themselves. 
Moreover, the standard deviations of the environments can exactly be gauged from the biplot 
from the lengths of the environment vectors. If the data had been three-dimensional, these 
lengths would only have been an approximation. Furthermore in cases of imperfect fit, large 
data values will be represented by large inner products, small data values by small inner 
products, but not all values in the original data matrix will be fitted equally well by the inner 
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products. 
  
4.1 Raw data  
 Raw data have not undergone any preprocessing, i.e. centring and/or scaling, and therefore 
the dimensions will be strongly influenced by the means. To show this the means of the 
genotypes and the environments have been included in Table 3. Table 3 shows the (near) perfect 
rank correlation between the first dimensions and the means for both the environments and the 
genotypes, indicating that these dimensions represent the differences between the means. 
 
Table 2. Raw Data 
       Environments 
  Genotypes  A   B   C 

������ �����	��
�����	��
 ��
����������
�������� �����	��������	���
� �� � ������������������ �� "!$#�%�#�� "!$#�%�#  �&�&���' �&�&���'
(*)(*) +-,�.$/$0+-,�.$/$0 1 +�2�/ 1 01 +�2�/ 1 0 +�3�4�4�/+�3�4�4�/
5*25*2 +�/�,�,+�/�,�, 00 1 +"6$/�,�/1 +"6$/�,�/ +�3�3�4�7+�3�3�4�7
586586 +�/�7�6�3+�/�7�6�3 1 +90�3�,:01 +90�3�,:0 +�3�2	3 1+�3�2	3 1
5;,5;, +-,�2�.	,+-,�2�.	, 1 +�2$0	.$21 +�2$0	.$2 +�/�2�6$7+�/�2�6$7
5*/5*/ +-,�.�.$/+-,�.�.$/ 1 + 1 3�0<,1 + 1 3�0<, +�3�4�/ 1+�3�4�/ 1
5�35�3 +-,�7�7�4+-,�7�7�4 1 +�2�7�/�.1 +�2�7�/�. +�/$0	6$/+�/$0	6$/
58.58. +�/ 1 0<4+�/ 1 0<4 4=+-4:0	6 14=+-4:0	6 1 +�3�7�6�6+�3�7�6�6

>	?:@	A<BDC>	?:@	A<BDC EGF�H�I�JEGF�H�I�J K F-L�I�MK F-L�I�M EGF K�N LEGF K�N L

σσ L=F-L K ML=F-L K M L=F K	O HL=F K	O H L=F-L�J�JL=F-L�J�J
PP Q=R-Q�S�SQ=R-Q�S�S Q=R�S�T$SQ=R�S�T$S Q=R-Q�T�UQ=R-Q�T�U

 
 From Table 3 and Fig. 2 and the size of the variability accounted for (97% and 3%, 
respectively), the dominance of the first dimension is obvious. The cause is the strong 
dominance of the means in the analysis. Fig. 2 is rather lopsided, because the representation of 
the genotypes is in standard coordinates, and that of the environments in principal coordinates 
with lengths equal to the singular values (5.11 and .81, respectively). Therefore, the vectors for 
the environments are much longer than those of the genotypes.  
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Table 3 Genotype and Environment Coordinates for the Raw Data 
 �

���������
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	�����
 �� �����������
������������������
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9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�99�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9 9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�99�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9:�;:�; <>=@?'A<>=@?'A BDC
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$ standard coordinates; £ principal coordinates 
 
4.2 Data centred by environments 
 The raw data have been processed by subtracting the environment means in accordance with 
Model 7 of Table 1.  Subsequently, they have been adjusted to make them perfectly two-
dimensional. 
 Again the representation of the genotypes is in standard coordinates, and that of the 
environments is in principal coordinates (lengths 4.75 and 2.11, respectively) makes the  
vectors for the environments longer than those for the genotypes, but not as much as for the raw 
data (Table 5). If we choose 4 as an arbitrary appropriate constant to adjust (here divide) all 
environment coordinates, the plot is more balanced and easier to read (see Fig. 3). 
 The length |A| of Environment A follows from |A|  = √ (.940² + 1.971²) = √4.77 = 2.18, 
which may be found from the Fig. 3 (keeping in mind the adjustment factor of 4). The length of 

 

Figure 2 Biplot of the perfectly two-dimensional raw data (Note: The scaling of the 
horizontal and vertical axes is not equal). 
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Genotype 6 is |G6|  = √ (.357² + -.319²) = .479. The inner product of Genotype 6 and 
Environment A is .357×.940 + (-.319)×1.971 = -.296, which is equal to the data value for 
Genotype 6 in Environment A, because of the perfect fit. The cosine of the angle between 
Genotype 6 and Environment A, cosθG6,A is the inner product divided by the lengths of the 
vectors, or -.296/(2.18 × .479) = -.28 and the angle θG6,A = 106°. The projection of Genotype 6 
onto the Environment A is the vector G6′′ and its (signed) length is equal to the length of 
Genotype 6 times the cosine of θG6,A or |G6| 3cosθG6,A = .479 × -.296 = -.142, where the minus 
sign indicates that the projection is on the opposite side from the origin from Environment A. 
The lengths of the environment vectors are proportional to their standard deviations. The 
background for the calculations is contained in the Appendix.  
  
Table 4 Environment Centred Data 
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Table 5  Genotype and Environment Coordinates for the Environment Centred Data 
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D 3D 3 K K 465�7 N465�7 N 4*M�: 84*M�: 8 X�YX�Y Z X Z Y U\[ Z RZ X Z Y U\[ Z R
D MD M K K 4$3�:	>4$3�:	> 4*M	M�:4*M	M�: Q^] X P�_"[�R`Q(aQ^] X P�_"[�R`Q(a 4�> 84�> 8 465�;465�;
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 In Fig. 3 projections of all genotypes onto Environment A have been drawn, and the 
relative performance of the genotypes in Environment A can directly be read from the graph. 
When the data are not perfectly two-dimensional, the inner products and thus the lengths of the 
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projections are only approximations to their real values. Note that the direction of the 
environment is of vital importance in assessing whether genotypes perform above or below 
average. Furthermore, note that it is not the closeness of a genotype point to the environment 
vector, but the size of the projection that determines the relative performance in an environment. 
For instance, Genotype 9 is much closer to the environment vector than Genotype 8, but the 
projection of Genotype 8 is larger (.6709) than that of Genotype 9 (.3833), see Table 4. It is thus 
incorrect to use a Euclidean distance (as one would measure with a ruler) between an 
environment point and a genotype point to assess their relationship. 
 Measuring the angles between the environments from the graph or calculating them from 
the coordinates gives θA,B = 104°,θA,C = 120°, θB,C = 16°, corresponding to correlations or 
cosines of rab = -.24, rac = -.50, and rbc = .96. 
 
 
 
4.3 Data standardised by environments 
 
 The environment centred data can be scaled without effecting their perfect two-
dimensionality, which makes direct comparison of the results possible. We have used the 
(population) standard deviation σ, i.e. without degrees of freedom corrections. Alternatively, we 
could have used s. 

 

Figure 3 Biplot for the perfectly two-dimensional centred data 
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Table 6 Environment Standardised Data �
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 From Table 7 we see that all environments have equal length vectors, and in the graph they 
are necessarily equal as well. When the fit is not perfect, the differences in lengths indicate 
differences in fit of the environments in the two dimensions shown in the biplot. Fig. 3 and 4 are 
fairly similar, because the standard deviations of the environments were not very different (see 
Table 4). 

 

Figure 4 Biplot of the perfectly two-dimensional environment standardised data. 
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Table 7 Genotype and Environment Co-ordinates for the Environment Standardised Data 
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5. Example: Mexican maize data 
 Ten trials were conducted to evaluate gains with recurrent (S1 or full -sib) selection in open-
polli nated genotypes from three late tropical maize populations (La Posta Sequía, Pool 26 
Sequía and Tuxpeño Sequía) that have been especially selected at CIMMYT for tolerance to 
drought around flowering. The populations have been improved by evaluating and recombining 
superior families based on their performance under managed drought environments and an 
irrigated environment. Five of the trials subjected the plants to drought while the other trials 
were well -watered. The data were analysed to determine gains with selection and to determine 
how grain yields and other traits had been affected by selection. Included in the trials were three 
check cultivars which had been improved by convential breeding. Full details about the trials 
and the analyses as well as all references can be found in Chapman, Edmeades, & Crossa 
(1996). 
 Here the yield data will be considered to show the biplot at work with real data in a case 
where there is no perfect fit. The raw location means were standardised by environments (see 
Model 8, Table 1). The co-ordinates for the two-dimensional biplot in PCA-scaling are given in 
Table 8, and the biplot itself in Fig. 5. The two dimensions represent 69% of the variation in the 
original G+G×E array. A third component accounts for an additional 12%. 
 Given the environment standardisation of the data the cosines between the angles of two 
environments represent the best approximation to their correlations in two dimensions. Thus 
water-stressed environments (including the well -watered, but iron-deficient environment 6) are 
highly correlated with not much difference between the intermediate (1,5) and severely stressed 
environments (2,4). There is a clear distinction between stressed and nonstressed environments, 
apart from environment 3, which takes an intermediate position. The genotypes do not cluster 
according to population, but there is a clear progression with selection for each population 
towards increasing yield especially in stressed conditions, as is evident from the negative 
projections of L1, T1, and P1 on the vectors of the stressed environments, i.e. they had below 
average yield in those environments. Early selections of Tuxpeño and Pool 26 had also below 
average yields average in non-stressed environments (7,8,9,10). The latest selections (L4, T3, 
and P3) all have positive projections on the stressed environments, i.e above average yields. The 
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increase has been most spectacular for Tuxpeño. La Posta yielded above average and continued 
to do so, although continued selection after L3 led to an increase in yield in stressed 
environment, but a decrease in the non-stressed environments. From the present data, it is 
diff icult to judge whether this is a systematic or accidental deviation from the pattern. The check 
cultivars which have gone through convential selection did not improve their drought tolerance, 
as evident from their below average projections on the environment vectors. 
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6. Relationship with PCA 
 In principal component analysis we are looking for that linear combination c=Xb which 
accounts for the largest amount of variation in a set of variables X. The standard solution to this 
problem is constructing the sums-of-squares-and-cross-products matrix (or after centring and 
scaling the correlation matrix) X′′X, and decomposing it (via the eigenvectors and eigenvalues) 
in VΛΛ2V′′, furthermore XX′′ can be decomposed into UΛΛ2U′′. It can be shown that U, V, and ΛΛ are 
the same as the matrices defined in equation (1). Moreover, c is equal to the first column of U 
and b is equal to λ1 times the first column of V. In other words, principal component analysis 
corresponds to the factorisation of equation (9). The parameters for a principal component 
analysis can thus directly be derived from the singular value decomposition. However, in PCA it 
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is general practice that X′′X is a correlation matrix, while this assumption is not made for the 
singular value decomposition. What this shows is that PCA is really a procedure with two steps, 
i.e. a centring and scaling followed by a (singular value) decomposition. The separation of these 
two steps is generally not emphasised in genotype by environment analyses but it becomes 
essential when analysing three-way data of genotypes by environments by attributes. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Biplot for Mexican Maize Yield Data  
 
 (Legend: P = Pool 26; L = La Posta; T = Tuxpeño; Ch* = Check of * ; D = Drought 

Resistant Varieties 1&2) 
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 APPENDIX 
 
 Some basic vector geometry relevant to biplots2 
 
 The interpretation of biplots depends heavily on properties of vectors in the plane or three-
dimensional space. This appendix provides a minimal introduction into the most basic 
properties of vectors leading up to the ideas of inner products and projections. 
 
Vector: Symbol: x or x

�

 
(Fig. 6A) A vector is a directed line segment; it has a length and a direction. Mostly vectors 

in biplots start at the origin, the point (0,0) in a two-dimensional biplot. The 
coordinates of x

�

 in the two-dimensional case are (x1,x2), where x1 is the value on 
the horizontal coordinate axis and x2 the value on the vertical coordinate axis. 
Therefore, a vector x

�

 runs from (0,0) to (x1,x2). 
Length: The length of a vector is indicated by  x

�

, and it is found via the 
(Fig. 6A) Pythagorean theorem (a2=b2+c2):  x

�

 = √(x1
2+x2

2) = √ (Σi xi
2). 

Scalar multiplication: 
(Fig. 6B) y&  = a x

�

. The vector x
�

is multiplied by a scalar a, and the resulting  vector y& has 

the same direction as x
�

, but is a times as long. Thus  y&  = a x
�

, and y1 = ax1 
+ ax2. 

Addition: z
�

 = x
�

+ y& , with coordinates z1 = x1 + y1 and z2 = x2 + y2. 
(Fig. 6C) 
Subtraction: z

�

 = x
�

 - y&  or z
�

 = x
�

 + (- y& ) with coordinates z1 = x1 - y1 and z2 = x2 - y2. 
(Fig. 6D) 
Linear combination: 
(Fig. 7A) z

�

 = bx x
�

 + by y& , which is a combination of vector addition and scalar 
multiplication. 

 
Angle: The angle between two vectors can be directly read or measured from a 
(Fig. 7B) graph, and we will indicate an angle between x

�

 and y&  as θxy. The angle can be 
computed algebraically via the inner product or dot product. 

Inner product/Dot product: 
  The dot product between two vectors is indicated by x

�

• x
�

 when using vector 
geometry, and by x

�

′ y&  when x
�

 and y&  are considered vectors. In the latter case 

the product is referred to as the inner product or scalar product of x
�

 and y& . 

  The dot product is defined as x
�

• y&  = x1y1 + x2y2 or in more geometric terms: x
�

• y&  

=  x
�

 y& cosθxy, which is the length of x
�

 times the length of y&  times the 
cosine of the angle between them. 

                                                 
    2Abstracted from Thomas. D. Wickens (1995). The geometry of multivariate statistics. Hillsdale, NJ: Erlbaum. 
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Calculation of angle: 
  First calculate the cosine of the angle: cosθxy = ( x

�

4• y& 5)/ x
�

6 y& 7, then 
convert the cosine to an angle via the "inverse cosine" button on your pocket 
calculator or look it up in a table. 

Special angles: 
(Fig. 8A) θxy = 0° → cos θxy = 1: x

�

8 and y& 9 are collinear, i.e. they lie on the same line in 

the same direction; y& 10 = b x
�

11 with b>0; x
�

12 is collinear with itself θxx=0; 

(Fig. 8B) θxy = 180° → cos θxy = -1: x
�

13 and y& 14 are collinear, i.e. they lie on the same 

line but in opposite directions; y& 15 = b x
�

16 with b<0; 

(Fig. 8C) θxy = 90° → cos θxy = 0: x
�

17 and y& 18 are orthogonal (perpendicular); 
x

�

19• y& 20 = 0. 
Projection: 
(Fig. 8D) The projection y& 21′ of y& 22 on x

�

23 is a vector collinear with x
�

24 which can be 

found by dropping a perpendicular line from y& 25 onto x
�

26 (see figure). Thus 
y& 27′ = d x

�

28. The length of y& 29′ is  y& 30cosθxy, and d = ( x
�

31• y& 32)/ x
�

332 
Equality between cosines and correlations: 
  If the environments are centred, then the cosine of θxy,the angle between two 

environments x
�

34 and y& 35 is equal to their correlation rxy, 

  where we have used the fact that the means are zero. 
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